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Lecture 2 outline

Principle of microring resonator
Power coupling formalism

Temporal coupled mode theory
Microring resonator modulators
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EPF

Principle of microring resonators — power coupling

formalism

Lecture 4 slide 5



Ring waveguide
Assume there is light circulating inside the ring

Resonance condition:  exp[—if(2nR)] =1

wres

Nefr e 2TTR = 2mm

Wyres = M

What can we do with that ? How do we get light in and out of this ring ?
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All pass filter configuration — power coupling formalism cPFL

We assume reflections are negligible:

Ey lr ik][Es
_Epass_ ik r Ein
E3 — aei¢E4
= ¢ = L : the single pass phase shift
= a:the single pass amplitude transmission.
It relates to the power attenuation coefficient a (1/cm): a® = exp(—aLpy)

= 71, k:the field self-coupling/ cross-coupling coefficient

r?,k? are the power splitting ratios, assumed to satisfy: 2 + k% = 1
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All pass filter configuration — intensity buildup

E a4

[7‘ ik
ik r

E3 — aei¢E4

.

Epass

We can express the relationship between the intracavity intensity E5 compared to the input one Ej,

E, ikae'?®

E;,, 1—raed

= Constructive interference at the coupler port ensures that circulating optical intensity is built up to a
higher value that initially injected:
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All pass filter configuration — intensity buildup

The buildup factor B is given by :

sl _ Es|* (1 —r?)a?
I, |Em| 1-—2racos¢ + r2a?
p=2mn I3 E; ? (1 —7r2)a?
 — = — = |— =
lin Ein (1—ra)?
¢=2mn _ k?a?
(1 -ra)?

Buildup Factor B

25 L

15 L

10 L

cPrL

a=0.98
k=0.17

Buildup Factor

® MaxB

Normalized Detuning
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Intensity buildup

Finite-difference time-domain simulation:
intensity coherent buildup in integrated
ring with index 2.5

Ref: J. Heebner, R. Grover, and T. Ibrahim, Optical Microresonators: Theory, Fabrication and
Applications, Springer Series in Optical Sciences (Springer, London, 2008)
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All pass filter configuration — intensity transmission

[7” ik
ik r
Epass T —ae'?®
E,, 1—raei?®

[EB] E3=aei¢E4
Ein

Ipass ~ a®—2racos¢ +r?
I, 1-2racos¢ + (ra)?

We obtain the intensity transmission T(¢): T(¢) =

(r —a)?

(1 — ar)?

= T is miminal at resonance, i.e. p = fL =2mmn: Tpyin =

(a +1)?
(1 + ar)?

= Tis maximalwhen ¢ = 2m+ 1)m: Ty =
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Intensity transmission

Ifa=r,T = 0:critical coupling

= case when coupled power is equal to the power loss in the ring (k? = 1 — a

If r < a: overcoupling

)

= Case when coupled power is higher than power loss in the ring (k? > 1 — a?)

If r > a: undercoupling

= Case when coupled power is lower than power loss in the ring (k? < 1 — a?)

Intensity transmission T

02 L

—r=096
r=0.75

I

Normalized Detuning

¢

2.75
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All pass filter configuration =PrL

If a = 1 then the transmission is always unity ...

E _aqel it
What is it good for ? Let’s consider also the phase: —2%5 = " 7%9€ "~ _ jiG+) 2 77°
E,, 1—rae 1—rae'®
E T Sin ra sin
arg( 2= | = (r + ¢) + tan™ ! e + tan™? e
E;, a—1cosq@ a—1racoso
a=1 E rsin ¢ — =0
bass -1 r=02
— = (m+¢) + 2t —
arg( E;., > (m+¢) an [1 —rcos¢ e

effective phase delay
3
T

|
™ 0 T
Normalized Detuning ¢
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Approximated transfer function

Consider the phase ¢ to be close to resonance condition, which is given by ¢,

We define a relative phase ¢ = ¢ — ¢,. Therefore, we have:

(¢ — po)* _
—— =

2
cos(¢p) = 1 — 1—('07

a’? — 2racos ¢ + r?
1—2racos¢ + (ra)?

The transfer function becomes: T(¢) =

a’ — 2ra + rag? +r?

=T =
1—2ra+ rag? + (ra)?

= 2mm
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Approximated transfer function =

By manipulating the expression, you get T=1-

(A=) (A-a>)  k*(1-a®)
B (1—ra)? B (1- am)z

With V the visibility: V

(1-ra)*> 1-avl—k?
o 1/2
ra (1= k2)"”

And @, the normalized phase ®¥o =

= The spectral characteristics depend on the losses and the coupling coefficients and can be extracted
from the transmission formulas
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Spectral characteristics : resonance linewidth =P

We can express the full width at half maximum by evaluating T at ¢ = ¢, since

V Tmin + Tmax
T(+py)=1——=
(o) > >

Let w; and w, the angular frequencies at which ¢ = —@y and ¢ = +¢,

Recall that ¢ (w) = ¢p(w) — ¢ and that ¢ = B(w), then we can show that:
B(wz) — B(wy) = 2¢,/L

From first order Taylor expansion of f(w) around w,, the resonance angular frequency, we also get:

p(wy) — f(wy) = préw

with dw = w, — w4 the FWHM in angular frequency
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Spectral characteristics : resonance linewidth

Given the two expressions :

2
B(w2) = B(w1) = =7 and f(wy) — f(wy) = B8

We have that S = 290 _ 290
LB Tg
2 (1—ra)
ow =
Tr +/ra
= Since f; = vi = Z—g, the inverse of the group velocity, Lf;is the roundtrip time Ty
g 0

= We can also express the linewidth in wavelength :

A2 S — (1-ra)r* (1-ra)i’

SA =
2TTC ncoTrTad nngL\ra

cPrL
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Spectral characteristics: free spectral range (FSR)
Between two resonant frequencies Aw = w,,+1 — Wy, there a phase shift difference of 27 .
In other words S (w,,)L — B(wm4+1)L = 27

Again if we take the Taylor series around the first resonance:

2T

Bo — (Bo + Brdw) =

Ay = 2 2m 27mcy

“TIL T T, In
).2

In wavelength the FSR is given by: AA = —
Lng
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Spectral characteristics (all pass configuration) cPrL

The on-off extinction ratio (AT) at the output port transmission is obtained by given by :

AT = Tmin

Tmax
— (r + a)? ~(a—1)?
max (1 4+ ra)? ™ (1 —ra)?

The Finesse J is defined as the ratio of FSR to the resonance width:

Ao mra

_%_1—7%1

R)

= Physical meaning: The Finesse represents within a factor 2w the number of round trips made by light
in the ring before its energy is reduced by a factor 1/e of its initial value
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Quality factor (Q-factor)

The Q-factor is a measure of the sharpness of the resonance relative to its central frequency:

Ares

oA

Q=

gl WresS
Q= lLos(1—71a) Aw

Physical meaning: represents the number of oscillations of the field before the circulating energy is
depleted to 1/e of its initial energy

= Microring is excited and the rate of power decay is considered
= Loss factors must be reduced to have high Q resonances

We distinguish two types of Q-factors:
= Loaded Q-factor: coupled resonator (intrinsic and coupling losses) (Q, sometimes written Q; )
= |ntrinsic Q-factor : when resonator would not be coupled to a waveguide (only intrinsic losses) (Q;)
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lllustration
2 (1—ra)
ow =
TR Vvra
FSR: 50 GHz
Finesse: 157
Q =46-10°3

S~ 00 A

Keep same intrinsic and coupling rates
Change only the FSR

cPrL

T\ra
0 = nngL\/ra 5 —
Ares(l — ra) 1-7ra
FSR: 10 GHz FSR: 50 GHz
Finesse: 157 Finesse: 773
Q=24-10* Q=24-10*

S~ 3

Keep the FSR
Change only the intrinsic and coupling rates
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Add-drop configuration cPrL
drop R add

*‘_ Ring resonator is coupled to 2 waveguides

" Incident field is partly transmitted to the
drop port

Can derive the transmission to pass and
drop ports from CW operation

. Lyass _ rZa? — 2ryr,acos L + 1f
P I, 1-=2rnracosPL+ (ryra)?
Idrop (1- rlz)(l — rZZ)a
Td — —

I, 1-—2rryacospBL+ (ryra)?
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Intensity build up and rerouting

Finite-difference time-domain simulation:
intensity coherent buildup in integrated
ring with index 2.5

m
v
"
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EPF

Principle of microring resonators — Temporal

coupled mode theory
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Temporal coupled mode theory approach
A

TMCT describes device behavior from the point of
view of energy exchange between resonator and
external waveguide

- Only valid under assumption of weak coupling

- Spatial distribution of energy in the cavity is
considered uniform

A(t) describes the amplitude of the field inside a mode of the resonator, |A|?is the energy stored
|s;,|? represents the photon flux of the pump and relates to the incident power.

In the simplest picture, there are only two rates involved:

= The coupling rate k., gives the strength of the coupling between the mode outside/inside the resonator
= The intrinsic loss rate i, the combined loss rate inside the resonator to all relevant loss channels
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Field evolution without driving/coupling

When only considering intrinsic dynamics (no coupling) of the mode in its rotating frame then:

dA(t) Ko
a - 2 A0

Solution is an exponential decaying field, such that the photon number decays as:

|A(D)|* = exp(—kqot)

Since the loss in one round trip is (1 — exp(—aLg)), then the decay rate k is:

_1—exp(—alg) _alpg
o= TR T Ty
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Field evolution with driving

Need to take into account the phase

= Assume a cavity mode A(t)exp(—iw,,t), w,, angular frequency of a resonance

= Assume a driving field Sinexp(—iwpt) , Wp angular frequency of the pump light

Equation of motion for the complex amplitude of the cavity field in the rotation frame of w,:

dA(t) _ (Ko + Kex)
dt 2

A(t) + \/Kexsine_i(“’p“"m)t

Change to the rotating frame to the driving field and introduce total energy loss k = kg + Koy

dA
d(tt) _ [—i(a)m — (Up) — g] A(t) + /Koy Sin

Note, we call coupling ratio: 1 = Kk, /K
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Field evolution with driving

In the steady stade, we can derive the cavity field amplitude:

Kex

S.
i(wm — a)p) +% -

The photon number inside the vacity is therefore :

Kex

(om = wp)" +(3)

|A|2 = 2 |Sin|2

Energy conservation dictates that |s,,:|? = |si,|? — Ko |A|?, we get

2
Sout —1— KexKo

T(w) =

Sin

om0+ ()

cPrL
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Transmission and characteristics

2
Sout

Sin

=1-

KexKO

(%)2 + (0 — Wypes)?

Lorentzian dip with minimal transmission on resonance (w — w,..; = 0)

= FWHM (linewidth of the resonance): 6w = k (and év = k/2m in frequency)

= Transmission extinction ratio: AT = (

Coupling conditions )
" Undercoupling 7 <3 (Kex < Ko)
(Kex = Ko)

= Critical coupling 1=

= Overcoupling n>= (Kex > Ko)

N[ = N =

KO +Kex

Ko—Kex

)

Transmission T

0.8 L

06 L[

04 L

02 L

Critically coupled

{l-----

Kex‘> KO |

Optical linewidth

K
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Quality factor =

res

oA

We know that: Q =

W W
In angular frequency we have (Q = — = —=

ow K

Give than the total loss rate includes the intrinsic and coupling rates (k = k¢ + K., ), We can express
the intrinsic Q factor (Q;) and coupling Q factor (Q,)

0; = Wres
i Kq
0. = Wres

.=
Kex

o~(gra)
B Qc Qi
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Finesse and () factor

Aw

By definition we have seen that 3 = =

We therefore have a link with the Q factor which is:

EPFL
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Link to experimental characterization

The measure of the transmission of a resonator can be used to extract important parameters :

wres

ow

Q =

_ 20
1 T \/Tmin/Tmax

(+ in case of undercoupled and — in case of overcoupled)

[

We can then estimate the intrinsic loss of the resonator using:

w’res

a =
ing
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Example

Wavelength : 1550 nm
neff =1.5

Overcoupled

Transmission

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

L]
X -0.575414
Y 0.719708

Min: 0.44
Transmission
@ Resonance Minimum
! ! ! ! !
-4 -2 0 2 4

Detuning (GHz)
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EPF

Microring resonator modulators
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Operating principle EPFL

In a ring resonator, modulation can be obtained through a resonance shift caused by a change of
refractive index:

Aneff

AWyes = " Wres
g

= Inclusion of group index ng, : effective index changes both due to refractive index modification but also
due to the resonant wavelength change

Recall that the FWHM of a resonance is a function of the quality factor

wres

FWHM =
Q

= Gives the characteristic quantity by which the resonance needs to be shifted to obtain substantial
modulation
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Resonance shift

Transmission

0.3

A(‘)res

Detuning (GHz)

cPrL

The higher the Q@ -factor, the lower the
resonance shift required

" i.e.the lower An,¢r needed

= Devices with high Q can be very efficient

But ....

Optically narrow device:

= Resonant enhancement constrains carrier
to coincide with resonant frequency

Low speed device:

= Field in resonators decays with a 1/e time
constant given by 2Q /w, .
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Speed consideration

For highspeed devices: it is necessary to reduce the Q-factor to obtain low enough photon storage
time, thus reducing the modulation efficiency

Q A

Wyres  2TCC

A

f=
J(anp)z + (2mRC)?
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Operation

Insertion loss

0
-5
p* doped
\
o
S
c -10
S
8
n* doped £
2 _____________________
£ |
~ -15
|
|
Input Output |
— e —p 20 ' ' . ' ' '
193.547 193548 f 5 193549 193.55
Frequency (THz)
[ [ — ]
off On
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Example from scientific article

Transmission (dB)

Transmission (dB)

O
5
- oV
I —-0.5V
-10 | 1.0V
[ —1.5V
I —-2.0V
151 ! —25V
}\MOD | __3.0\/
(1317.54 nm) | Yy
-20 - 1 =
1317 1317.5 1318 1318.5
Wavelength (nm)
0 =
ol I 3dB (IL)
C ______________________
_4 L
-6+
-8Ff
10+
-12 1 1 )
-1.5 -2.0 -2.5 -3.0

Gate Bias (V)

cPrL

4600qg 1400
D
4400 | -
4200 &
1200 o
o
4000 r<]<
3800 [
D,
3600¢& . L 0
-1 -2 -3
Gate Bias (V)
5
S A
- ~
0 - . ~ %
____________________ . —
'5 ™ \
»
kN
_1 0 R
xMeasured
- Fitted
-15 : : %
10° 10"
Frequency (GHz)

Wei-Che Hsu et al., Nature Communications 15(826), 2024
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